اثرات نانوذرات نقره بر اجزای لاشه، برخی فراسنجه‏های خونی و فعالیت‏های آنزیمی آنتی‏اکسیدانی بلدرچین تخم‏گذار ژاپنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد فیزیولوژی علوم دامی دانشکده کشاورزی دانشگاه کردستان.

2 عضو هیأت علمی گروه علوم دامی دانشکده کشاورزی دانشگاه کردستان

چکیده

نانوذرات نقره به عنوان پرمصرف ترین نانو ذره در صنعت نانوتکنولوژی دارای اثرات ضدباکتریایی، ضد قارچی و ضد ویروسی می‏باشند. از آن جا که مصرف نانوذرات نقره در صنعت طیور رو به افزایش است، به منظور مطالعه اثرات این مواد بر اجزای لاشه، برخی فراسنجه‏های خونی و آنتی‏اکسیدانی بلدرچین تخم‏گذار تعداد 60 قطعه بلدرچین ماده در چهار تیمار و پنج تکرار و هر تکرار شامل سه قطعه بلدرچین ماده در 20 قفس استفاده گردید. تیمارهای آزمایشی شامل ppm صفر، 12، 36 و 108 نانوذرات نقره بود که در آب آشامیدنی مصرف شد. نتایج نشان داد که در تیمارهای آزمایشی ppm 36 و 108 نانوذرات نقره وزن نسبی کبد بطور معنی‏داری کاهش یافت(05/0p<). برای سایر صفات لاشه اختلاف معنی‏داری مشاهده نشد. تیمار دریافت‏کننده ppm 108 نانوذرات نقره افزایش معنی‏داری را در آنزیم آسپارتات آمینوترانسفراز کبدی نشان داد(01/0p<). در بررسی فعالیت آنزیم‏های آنتی‏اکسیدانی گروه‏های مختلف، غلظت سرمی مالون دی آلدئید، غلظت مالون دی آلدئید بافت کبد و ظرفیت آنتی‏اکسیدانی تام سرم گروه ppm 108 با افزایش معنی‏داری مواجه شد(05/0p<). با توجه به نتایج این تحقیق نانوذرات نقره سبب بروز اختلالات کبدی و افزایش القاء تنش اکسیداتیو در بلدرچین تخم‏گذار می‏گردد. 

  1. Aebi, H. (1984) Catalase in vitro. Methods In Enzymology. Vol,105. No, C. pp:121-126.
  2. Ahamed, M., R. Posgai, T. J. Gorey, M. Nielsen, S. M. Hussain, and J. J. Rowe. (2009) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicology and Applied Pharmacology. Vol,242. No,3. pp:263-269.
  3. Akradi, L., I. S. Haghdoost, A. N. Djeddi, and M. Pejman. (2012) Histopathologic and apoptotic effect of nanosilver in liver of broiler chickens. African Journal of Biotechnology. Vol,11. No, 22. pp: 6207-6211.
  4. Arora, S., J. Jain, J. M. Rawgwade, and K. M. Panikar. (2008) Cellular responses induced by silver nanoparticles: In vitro studies. Toxicology Letters. Vol, 179. No, 2. pp: 93- 100.
  5. Arora, S., J. Jain, J. M. Rawgwade, and K. M. Panikar. (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cell. Toxicology and Applied Pharmacology. Vol, 236. No, 3. pp: 310- 318.
  6. Asharani, P. V., G. L. K. Mum, M. P. Hande, and S. Valiyaveettil. (2009) Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS nano. Vol, 3. No, 2. pp: 279-290.
  7. Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. Vol, 72. No, 1-2. pp: 248-254.
  8. Buzea, C., I. I. P. Blandino, and K. Robbie. (2007) Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. Vol, 2. No.4, pp: 17-172.
  9. Carlson, C., S. M. Hussain, A. M. Schrand, L. K. Braydich-stolle, K. L. Hess, R. L. Jones., et al. (2008) Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species. The Journal of Physical Chemistry. Vol, 112. No, 43. pp: 13608-13619.
  10. Chen, X., and H. J. Schluesener. (2008) Nanosilver: A nanoproduct in medical application. Toxicology Letters. Vol, 176. No, 1. pp: 1–12.
  11. Choi, J. E., S. Kim, J. H. Ahn, P. Youn. J. S. Kang, K. Park., et al. (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish.Aquatic Toxicology. Vol, 100. No, 2. pp: 151-159.
  12. Farzinpour, A., and N. Karashi. (2013) The effects of nanosilver on egg quality traits in laying Japanese quail. Applied Nanoscience. Vol,3. No,2. pp: 95-99.
  13. Franco-Molina M. A., E. M. Gamboa, C. A. S. Rivera, R. A. G. Flores, P. Z. Benavides, P. C. Tello., et al. (2010) Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. Journal of Experimental & Clinical Cancer Research. Vol, 29. No, 148. pp:1-7.
  14. Gaiser, K. B., S. Hirn, A. Kermanizadeh, N. Kanase, K. Fytianos, A. Wenk., et al. (2012) Effects of Silver Nanoparticles on the Liver and Hepatocytes in vitro. Fundamental and Applied Toxicology. Vol, 12. No, 2. pp: 1-44.
  15. Gholami-Ahangaran, M., and N. Zia-Jahromi. (2012) Effect of nanosilver on blood parameters in chickens having aflatoxicosis. Toxicology and Industrial Health. Vol, 29. No, 2. pp: 121-125.
  16. Govindasamy, R., and A. A. Rahuman. (2012) Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus). Journal Environmental Science . Vol, 24. No, 6. pp: 1091–1098.
  17. Hritcu, L., M. Stefan, L. Ursu, A. N eagu, M. Mihasan, L. Tartau., et al. (2011) Exposure to silver nanoparticles induces oxidative stress and memory deficits in laboratory rats.Central European Journal of Biology. Vol, 6. No,4. pp: 497-509.
  18. Hussain, M. S., K. L. Hess, J. M. Gearhart, K. T. Geiss, and J. J. Schlager. (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicological science. Vol, 108. No, 2. pp: 223-224.
  19. Hyuck sung, J., J. Ho jh, J. Duck Park, J. Uk yoon, D. Sung kim, K. Soon jeon., et al. (2009) Subchronic Inhalation Toxicity of Silver Nanoparticles. Fundamental and Applied Toxicology. Vol, 108. No, 2. pp: 452- 461.
  20. Ji, J. H., J. H. Gung, J. U. Yoon, J. D. Park, B. S. Choi, Y. H. Chung., et al. (2007) Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicology. Vol, 19. No,10. pp: 857- 71.
  21. Kim, Y. S., J. S. Kim, H. S. Cho, D. S. Rha, J. M. Kim, J. D. Park., et al. (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in in Sprague-Dawley Rats. Inhalation Toxicology. Vol, 20. No, 6. pp: 575- 583.
  22. Kim, S., J. E. Choi, J. Choi, K.H. Chaung, K. Park, J. Yi., et al. (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology In Vitro. Vol, 23. No, 6. pp: 1076-1084.
  23. Kim, Y. S., M. Yong Song, J. Duck park, K. Seuk Song, H. R. Ryu, Y. Hyun Chug., et al. (2010) Subchronic oral toxicity of silver nanoparticles. Particle and Fibre Toxicology. Vol, 7. No, 20. pp: 1 - 11.
  24. Kim, S., S. Kim, S. Lee, B. Kwon, J. Choi, J. W. Hyun., et al. (2011) Characterization of the Effects of Silver Nanoparticles on Liver Cell Using HR-MAS NMR Spectroscopy. Bulletin of the Korean Chemical Society. Vol, 32. No, 6. pp: 2021-2026.
  25. Korani, M., S. M. Rezayat, K. Gilani, S. Arbabi, and S. Adeli. (2011) Acute and subchronic dermal toxicity of nanosilver in guinea pig. International Journal of Nanomedicine.Vol, 6. No, 1. pp: 855-861.
  26. Kusano, C., and B. Ferrari. )2008( Total Antioxidant Capacity: a biomarker in biomedical and nutritional studies. Journal of cell and molecular biology.Vol,7. No, 1. pp:1-15.
  27. Marklund, S., and G. Marklund. (1974) Involvement of the superoxide anion radical in the autoxidation of pyragallol and a convenient assay for superoxide dismutase. European journal ofBiochemistry. Vol, 47. No, 3. pp: 469-74.
  28. Nazifi, S. (1996) Avian hematology and clinical biochemistry. Third Edition, Shiraz University. pp: 217-222.
  29. Nishanth, R.D., R. G. Jyostana, J. J. Schlager, S. M. Hussain, and P. Reddanna. (2011) Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: Role of ROS-NFκB signaling pathway. Nanotoxicology.Vol, 5. No, 4. pp: 502- 526.
  30. Nsiah, K., V. P. Dzogbefia, D. Ansong, A. O. Akoto, H. Boateng, and D. Ocloo. (2011) Pattern of AST and ALT Changes in Relation to Hemolysis in Sickle Cell Disease. Clinical Medicine. Vol, 4. No, 1. pp: 1- 9.
  31. Paglia, D. E., and W. N. Valentine. (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The journal of Labratory and Clinical Medicine. Vol, 70. No, 1. pp :158-169.
  32. Park, E. J., E. Bae, J. Yi, Y. Kim, K. Choi, and S. H. Lee. (2012) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environmental Toxicology and Pharmacology. Vol, 30 No, 2. pp: 162-168.
  33. Pengpeng, L., R. Guan, X. Ye, J. Jiang, M. Liu, G. Huang, and X. Chen. (2007) Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02. Journal of Physics. Vol, 304. No, 1. pp: 1- 9.
  34. Satoh, K. (1978) Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clinica Chimica Acta; International Journal of Clinical Chemistry. Vol, 90. No, 1. pp: 37-43.
  35. Sawosz, E., M. Grodzik, M. Zielinska, T. Niemiec, B. Olszanska, and A. Chwalibog. (2008) Nanoparticles of silver do not affect growth, development and DNA oxidative damage in chicken embryos. European Poultry Science. Vol, 73. No, 3. pp: 208-216.
  36. Siddique. Y. H., G. Ara, and M. Afzal. (2012) Estimation of lipid peroxidation induced by hydrogen peroxid in cultured human lymphocyte. Dose Response. Vol, 10. No, 1. pp: 1-12.
  37. Tang, J. L., L. Xiong, S. Wang, J. Wang, L. Liu, J. Li., et al. (2009) Distribution, Translocation and Accumulation of Silver Nanoparticles in Rats. Journal of Nanoscience and Nanotechnology. Vol, 9. No, 3. pp: 1–9.

Tiwari, D. K., T. Jin, and j. Behari. (2011) Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. pan h�"e'�� �i� :12.0pt;line-height:115%;mso-fareast-font-family: Calibri;mso-bidi-language:AR-SA;mso-bidi-font-weight:normal'>Tang, J. L., L. Xiong, S. Wang, J. Wang, L. Liu, J. Li., et al. (2009) Distribution, Translocation and Accumulation of Silver Nanoparticles in Rats. Journal of Nanoscience and Nanotechnology. Vol, 9. No, 3. pp: 1–9.

 

  1. Tiwari, D. K., T. Jin, and j. Behari. (2011) Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicology Mechanisms and Methods. Vol, 21. No, 1. pp: 31-24.

Zargaran-Esfahani, H., S. D. Sharifi, A. Barin, and A. Afzal zadeh. (2010) Influence of Silver Nanoparticles on Performance and Carcass Properties of Broiler Chicks. Iranian Journal of Animal Science. Vol, 41. No, 2. pp: 137-143.