تاثیر اندازه ذرات جو سیلویی و دو نوع دانه جو و ذرت بر مصرف و قابلیت هضم مواد مغذی، فراسنجه‌های شکمبه‌ای و رفتار مصرف خوراک در گوسفند نر کرمانی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد تغذیه نشخوارکنندگان، بخش علوم دامی دانشکده کشاورزی دانشگاه شهید باهنر کرمان.

2 استادیار، بخش علوم دامی دانشکده کشاورزی دانشگاه شهید باهنر کرمان.

3 دانشیار بخش علوم دامی دانشکده کشاورزی دانشگاه شهید باهنر کرمان

4 استاد، بخش علوم دامی دانشکده کشاورزی دانشگاه شهید باهنر کرمان.

چکیده

این پژوهش به منظور بررسی تأثیر اندازه ذرات علوفه سیلو شده جو و دو نوع دانه غله (جو و ذرت) بر مصرف خوراک و قابلیت هضم مواد مغذی، فراسنجه‌های شکمبه‌ای و رفتار مصرف خوراک در قالب طرح چرخشی متوازن در گوسفند انجام شد. علوفه جو با 5/1 ±0/28 درصد ماده خشک درو و با دو طول برش فرضی 16 و هشت میلی‌متر خرد و علوفه سیلو شده بلند و کوتاه تهیه شد. از چهار راس گوسفند نر با میانگین وزن 05/2±38/53 کیلوگرم استفاده شد و جیره‌های آزمایشی عبارت بودند از: 1) علوفه سیلو شده بلند و دانه جو، 2) علوفه سیلو شده بلند و 20 درصد دانه ذرت، 3) علوفه سیلو شده کوتاه و دانه جو و 4) علوفه سیلو شده کوتاه و 20 درصد دانه ذرت. مصرف ماده خشک در جیره‌های دارای دانه ذرت بیشتر بود (05/0>P). دو و چهار ساعت بعد از مصرف خوراک pH شکمبه تحت تأثیر اندازه ذرات علوفه سیلو شده و نوع دانه در کنسانتره قرار گرفت و در جیره‌های دارای علوفه سیلو شده بلند و جیره‌های دارای کنسانتره حاوی20 درصد دانه ذرت بیشتر بود (05/0>P). اندازه ذرات علوفه سیلو شده و نوع دانه بر غلظت نیتروژن آمونیاکی و نیتروژن و پروتئین میکروبی تأثیر معنی‌داری نداشت (05/0P>). رفتار مصرف خوراک تحت تأثیر اندازه ذرات علوفه سیلو شده قرار گرفت، ولی نوع دانه تأثیری نداشت. در جیره‌های دارای دانه ذرت به علت افزایش pH وتأمین محیط بهتر شکمبه، مصرف ماده خشک افزایش یافت.

کلیدواژه‌ها

موضوعات


تقی زاده، ا.، علیزاده، س. و نوبخت ع. (1389). بررسی تأثیر لازالوسید روی پارامتر­های شکمبه، متابولیت های خون و عملکرد بره های نر قزل.  مجله پژوهشهای علوم دامی شماره ٤، ص ص. 78-67.

شمسی، علی. (1393). تأثیر دو سطح اندازه ذرات سیلاژ جو و دو سطح کنسانتره بر ویژگی­های فیزیکی جیره، مصرف خوراک، قابلیت هضم مواد مغذی، تولید پروتئین میکروبی و رفتار مصرف خوراک در گوسفند نر کرمانی. پایان نامه کارشناسی ارشد تغذیه دام، دانشکده کشاورزی دانشگاه شهید باهنر کرمان، ایران.

فلاح، ر.، کیانی، ع.، آذرفر، آ. و وطن پرست، م. (1390). تاثیر افزودن ماست ترش به عنوان تلقیح کننده باکتریایی بر روی کیفیت سیلوی ذرت علوفه­ای. مجموعه مقالات اولین کنگره ملی علوم و فناوری­های نوین کشاورزی، دانشگاه زنجان، ایران.

کهیانی، علی (1391). بررسی اثرتغذیه اندازه ذرات علوفه یونجه در جیره­های اسیدوژنیک بر رفتار انتخابگری و جویدن گاوهای هلشتاین اواسط شیردهی. پایان نامه کارشناسی ارشد تغذیه دام، دانشکده کشاورزی دانشگاه صنعتی اصفهان، ایران.

کارگر، ش.، قربانی،  غ. ر. و خوروش، م. (1392). گوارش پذیری مواد مغذی، فراسنجه­های تخمیر شکمبه­ای و عملکرد تولیدی در پاسخ به تغییر دادن نسبت دانه غله جو به ذرت در جیره­ گاوهای شیری هولشتاین. مجله پژوهش در نشخوار کنندگان. شماره دوم، ص ص. 16-1.

American Society of Agricultural Engineers (2002). Method of determining and expressing particle size of chopped forage (ASAE. S424.1). 70th ed. American Society of Agricultural and Biological Engineers. Joseph, MI.

AOAC (2005). Official Methods of Analysis of AOAC International, 18th ed. Association of Official Analytical Chemists, Gaithersburg, MD, USA.

Asadi Alamoutia,  A.,  Alikhania, M.,  Ghorbania, G.R.  and  Zebeli, Q. (2009). Effects of inclusion of neutral detergent soluble fiber sources in diets varying in forage particle size on feed intake, digestive processes, and performance of mid-lactation Holstein cows. Animal Feed Science and Technology. 154: 9–23.

Bagheripour, E., Rouzbehan, Y., and  Alipour, D. (2008).  Effects of ensiling, air-drying and addition of polyethylene glycol on in vitro gas production of pistachio by-products. Animal Feed Science and Technology. 146: 216-226.

Beauchemin, K. A., Yang, W. Z.  and Rode L. M.  (2003). Effects of particle size of alfalfa based-dairy cow diets on chewing activity, ruminal fermentation, and milk production. Journal of Dairy Science. 86: 630–643.

Benninghoff, J., Paschke-Beeseb, M. and Südekum, K.-H. (2015). In situ and in vitro ruminal degradation of maize grain and untreated or xylose-treated wheat, barley and rye grains. Animal Feed Science and Technology. 86: 56-93.

Chen,  X.B. and Gomes, G.B. (1995). Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives – an over view of the technical details, Occasional Publication, Rowette Research Institute, Aberdeen, UK.

Denek N and Can A. (2006). Feeding value of wet tomato pomace ensiled with wheat straw and wheat grain for Awassi sheep. Small Ruminant Research. 65: 260-265.

Haddad S.G., Nasr R.E. )2007(. Partial replacement of barley grain for corn grain: Associative effects on lambs’ growth performance. Small Ruminant Research, 72: 92–95.

Herrera-Saldana, R.E., Huber J.T. and Poore M.H. (1990).  Dry matter, crude protein and starch degradability of five cereal grains. Journal of Dairy Science, 73: 2386–2393.

Higginbotham, G.E., Mueller, S.C.,  Bolsen, K.K. and Depeters, E. J. (1997). Effects of inoculants containing  propionic acid  bacteria on fermentation and aerobic stability of corn silage. Journal of Dairy Science. 81: 2185–2192.

Hirayamaa, T. and Katoh, K.  (2005). Effects of fistula size on rumen internal pressure and passage rate of feed in goats. Small Ruminant Research. 56: 277–280.

Khorasani, G.R., Okine,  E.K. and Kennelly J.J.  (2001). Effects of barley grain with corn on ruminal fermentation characteristics, milk yield, and milk composition of Holstein cows. Journal of Dairy Science. 84: 2760–2769.

Kincheloe, J., Bowman, J.G.P., Surber, L.M.M., Boss, D. L., Anderson, K. A. and Blake, T. K. (2003). Effects of barley or corn on performance and digestibility in finishing diets. Proceedings, Western Section, Journal of  Animal Science. 54: 363–365.

Kleen, J.L., Hooijer, G.A., Rehage, J. and Noordhuizen, J.P.  (2003). Subacute ruminal acidosis (SARA): a review. Journal of Veterinary Medicine. 50: 406–414.

Koenig K.M., Beauchemin, K.A. and Rode, L.M. (2003). Effect of grain processing and silage on microbial protein synthesis and nutrient digestibility in beef cattle fed barley-based diets. Journal of Animal Science.  81:1057–1067.

Kononoff  P.J.,  Heinrichs, A.J. and Buckmaster, D.A. (2003). Modification of the Penn State forage and total mixed ration particle separator and the effects of moisture content on its measurements. Journal of Dairy Science. 86:1858–1863.

Kozakai, K., Nakamura, T., Kobayashi, Y., Tanigawa, T., Osaka, I., Kawamoto, S., and  Hara, S. (2008). Effect of mechanical processing of corn silage on in vitro ruminal fermentation, and in situ bacterial colonization and dry matter degradation. Canadian Journal of Animal Science. 87: 259-267.

Martin, C and B. Michalet-Doreau, (1995). Variations in mass and enzyme activity of rumen microorganisms: Effect of barley and buffer supplements. Journal of Science of Food and Agriculture. 67: 407–413.

Maulfair, D.D. and Heinrichs, A.J. (2013). Effects of varying forage particle size and fermentable carbohydrates on feed sorting, ruminal fermentation, and milk and component yields of dairy cows. Journal of Dairy Science. 96:3085–3097.

Maulfair DD, Fustini M, and Heinrichs AJ. 2011. Effect of varying total mixed ration particle size on rumen digesta and fecal particle size and digestibility in lactating dairy cows. Journal of Dairy Science. 94: 3527–3536.

McCarthy, R.D., Klusmeyer, T.H., Vincini, J.L., Clark,  J.H. and Nelson, D.R. (1989). Effects of source of protein and carbohydrate on ruminal fermentation and passage of nutrients to the small intestine of  lactating cows. Journal of Dairy Science. 72:2002–2016.

McDonald,  P.,  Edwards, R.A., Greenhalgh, J.F.D.,  Morgan, C.A., Sinclair,  L.A. and Wilkinson, R.G. (2011). Animal nutrition. 7th edition. Prentice Hall, Harlow.

McDonald, P., Henderson A. R and Heron, S.J.E. (1991). Biochemistry of Silage. Second Edition, Chalcombe Publications, Marlow, U.K.

Mertens, D. R. (2002). Measuring fiber and its effectiveness in ruminant diets. In:  Proceedings. The Plains Nutrition Council – Spring Conference. San Antonio, Texas. Pp: 40-66.

Nasrollahi, S.M., Imani, M. and Zebeli, Q. (2015). A meta-analysis and meta-regression of the effect of forage particle size, level, source, and preservation method on feed intake, nutrient digestibility, and performance in dairy cows. . Journal of Dairy Science. (98) 8926-8939

Obara, Y., Dellow, D.W. and Nolan, J. V. (1991). The influence of energy on nitrogen kinetics in ruminants.m In: Physiological Aspects and Digestion and Metabolism in Ruminants. T. Tsuda, Y. Sasaki and R. Kawashima (Eds), Academic Press, Sydney. pp. 515-539.

Overton, T.R., Cameron, M.R., Elliot, J.P. and Clark, J.H. (1995). Ruminal fermentation and passage of nutrients to the duodenum of lactating cow fed mixtures of corn and barley. Journal of Dairy Science. 78:1981-1998.

Pitt, R.E., Van Kessel, J.S.,  Fox, D.G.,  Pell, A.N.,  Barry, M.C.  and Van Soest, P.J. (1996).  Prediction of ruminal volatile fatty acids and pH within the net carbohydrate and protein system. Journal of Animal. Science. 74: 226–244.

Rymer, C. (2000). The measurement of forage in vivo digestibility. In: Forage Evaluation in Ruminant Nutrition, Edited by D. I. Givens, E. Owen, H. M. Omed and R. F. E. Axford. Pp: 113-134.

SAS  (2005). SAS User’s Guide. SAS Institute Inc. Version 9. 1. Cary, NC, USA.

Soita, H. W. Christensen, D. A. and McKinnon, J. J. (2000). Influence of particle size on the effectiveness of the fiber in barley silage. Journal of Dairy Science. 83:2295–2300.

Tafaj, M.Q.,  Zebeli, C.h., Bash Steingass, and  Drochner, W. (2007). A meta-analysis examining effects of particle size of total mixed rations on intake, rumen digestion and milk production in high-yielding dairy cows in early lactation. Animal Feed Science and Technology. 138: 137–161.

Teimouri Yansari,  A.,  Valizadeh, R., Naserian,  A., Christensen, D.A.,  Yu, P. and Eftekhari Shahroodi, F. (2004). Effects of alfalfa particle size and specific gravity on chewing activity, digestibility, and performance of Holstein dairy cows. Journal of  Dairy Science. 87: 3912-3924.

Weatherburn, W. (1967). Phenol-Hypochlorite reaction for determination of ammonia. Analytical Chemistry. 39: 971-974.

Yang, W. Z. and  Beauchemin, K.A.  (2006a). Increasing the physically effective fiber content of dairy cow diets may lower efficiency of feed use. Journal of Dairy Science. 89: 2694–2704.

Yang, W.Z. and Beauchemin, K.A. (2006b). Effects of Physically Effective Fiber on Chewing Activity and Ruminal pH of Dairy Cows Fed Diets Based on Barley Silage. Journal of Dairy Science. 89: 217–228.

Yang, W.Z., Beauchemin, K.A. and Rode, L.A. (2001). Effects of grain processing, forage to concentrate ration, and forage particle size on rumen pH and digestion by dairy cattle. Journal of Dairy Science. 84: 2203–2216.

Zebeli, Q., Aschenbach, J.R., Tafaj M., Boguhn, J., Ametaj, B.N. and Drochner, W. (2012). Invited review: Role of physically effective fiber and estimation of dietary fiber adequacy in high-producing dairy cattle. Journal of Dairy Science. 95: 1041–1056.