Effect of nutrients density on growth performance, carcass parts and growth curve characteristics in Japanese quails.

Document Type : Research Paper

Authors

1 Msc Graduated Student

2 Guilan University

3 Accademic staff at Guilan University

Abstract

In this experiment, 1032 one-day-old Japanese quails were randomly divided into 4 dietary treatment groups with 3 replicates of 86 quails in each. The treatment groups were: 1) group with low dietary nutrient concentration [95% of nutrients recommended by NRC (1994), -5% NRC], 2) group with medium dietary nutrient (DN) concentration [100% of nutrients recommended by NRC (1994)], 3) group with high DN concentration [105% of nutrients recommended by NRC (1994), +5% NRC] and 4) group with very high DN concentration [110% of nutrients recommended by NRC (1994), +10% NRC]. Feed intake was affected by dietary treatments only during 0-21 d period, with a lesser of feed consumption for group 1 compared to the other groups. Body weight gain was increased in harmony to the nutrient concentration in all phases of the experiment. The best feed conversion ratio was achieved by +10% NRC. Except for the relative weights (% of live weight) of thigh muscle, pancreases and gizzard, there were no significant differences between the dietary treatments for other carcass parts. According to the Gompertz function, asymptotic weight (Wf) was higher in +10% NRC (295 g) than the other dietary treatments (269, 292.7 and 290 g for -5% NRC, NRC and +5% NRC, respectively) as was the case with growth rate constant (b: 0.059, 0.059, 0.061 and 0.061 for -5% NRC, NRC, +5% NRC and +10% NRC, respectively). The range of age and weight at point of inflection were from 19.7 to 20.8 d and 99.3 to 108.7, respectively.

Keywords


شکوهمند، م. (1387). پرورش بلدرچین، انتشارات نوربخش. ص 160.
دیانی ا، (1376). پرندگان خاورمیانه وخاورنزدیک، جلداول، چاپ دوم، انتشارات دانشگاه تهران: ص 184.
شیخ، ن.، مروج، م.، شیوازاد، م. و توحیدی، آ. (1391). اثرات سطوح مختلف انرژی و پروتئین جیره بر عملکرد وخصوصیات لاشه بلدرچین­های ژاپنی. 1(2): 55-63.
یازرلو، م.، شریفی، س.د.، شریعتمداری، ف. و صالحی، ع. (1392). تعیین سطح مطلوب انرژی و پروتئین در جیره بلدرچین ژاپنی. 15(1): 1-10.
کیائی، م.م. و مدیر صانعی، م. (1380). تولید مثل در طیور، انتشارات دانشگاه تهران. ص 376.
Abdel, M.M.A. (2005). Effect of dietary energy on some productive and physiological traits in Japanese quail. Department of Animal Production, Faculty of Agriculture, Al-azhar University. PhD Thesis.
Abdel-Azeem, A.F. (2011). Influence of qualitative feed restriction on reproductive performance of Japanese quail hens. Egyptian Poultry Science Journal. 31: 883-897.
Angulo, E., Brufau, J., Miquel, A. and Garcia, E. (1993). Effect of diet concentration and pelleting on productive parameters of Japanese quail. Poultry Science. 72: 607-610.
Bertechini, A.G. (2006). Non ruminants nutrition. Lavras (City), UFLA (Federal University of Lavras). p: 301.
Caron, N., Minvelle, F., Desmarais, M. and Poste, L.M. (1990). Mass selection for 45-day body weight in Japanese quail: selection response, carcass composition, cooking Properties and sensory characteristics. Poultry Science. 69: 212-217.
Cohen, M. A., Ellis, S.M., Le Roux, C.W., Batterham, R.L., Park, A., Patterson, M., Frost, G. S., Ghatei, M.A. and Bloom, S.R. (2003). Oxyntomodulin suppresses appetite and reduces food intake in humans. Journal of Clinical Endocrinology and Metabolism. 88:4696–4701.
Correa, G.S.S., Silva, M.A., Correa, A.B., Fontes, D.O., Torres, R.A., Dionello, N.J.L., Santos, G.G. and Freitas, L.S. (2007). Crude protein and metabolizable energy requirements for EV1 meat type quail line. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia. 59(3): 797-804.
Freitas, A.C., Fuentes, M.d.F.F., Freitas, E.R., Sucupira, F.S., Oliveira, B.C.M. and Espindola, G.B. (2006). Dietary crude protein and metabolizable energy levels for meat quails. Revista Brasileira de Zootecnia. 35: 1705-1710.
Gibbs, J., Young, R.C. and Smith G.P. (1973). Cholecystokinin decreases food intake in rats. Journal of Comparative and Physiological Psychology. 84:488–495.
Golian, A., Aami Azghadi, M. and Pilevar, M. (2010). Influence of various levels of energy and protein on performance and humoral immune responses in broiler chicks. Global Veterinaria. 4(5): 434-440.
Hancock, C.E., Bradford, G.D., Emmans, G.C. and Gous, R.M. (1995). The evaluation of the growth parameters of six strains of commercial broiler chickens. British Poultry Science. 36:247–264.
Kaur, S., Mandal, A. B., Singh, K.B. and Kadam, M.M. (2008). The response of Japanese quails (heavy body weight line) to dietary energy levels and graded essential amino acid levels on growth performance and immunocompetence. Livestock Science. 117: 255-260.
Jahanian, R. and Edriss, M. A. (2015). Metabolizable energy and crude protein requirements of two quail species. Journal of Animal and Plant Sciences. 25(3): 603-611.
Morton, G.T., Blevins, J.E., Williams, D.L., Niswender, K.D., Gelling, R.W., Rhodes, C.J., Baskim, D.G. and Schwartz, M.D. (2005). Leptin action in the forebrain regulates the hindbrain response to satiety signals. Journal of Clinical Investigation. 115: 703–710.
Mosaad, G.M.M. and Iben, C. (2009). Effect of dietary energy and protein levels on growth performance, carcass yield and some blood constituents of Japanese quails (Coturnix coturnix Japonica). Die Bodenkultur. 60 (4) 39-46.
Narinc, D.; Karaman, E.; Firat, M.Z. and Aksoy, T. (2010). Comparison of non-linear growth models to describe the growth in Japanese quail.Journal of Animal and Veterinary Advances. 9: 1961-1966.
NRC, (1994). Nutrient requirements of poultry, 9th revised edition. Washington, DC.
Panda, B. and Singh, P. (1990). Developments in processing quail meat and eggs. Poultry Science. 46: 219-230.
Parvin, N., Mandal, T.k., Saxena, V., Sarkar, S. and Saxena, A.K. (2010). Effect of increasing protein percentage feed on the performance and carcass characteristics of the broiler chicks. Asian Journal of Poultry Science. 4(2): 53-59.
Rajini, R.A. and Narahhari, D. (1998). Dietary protein and protein requirements of growing Japanese quails in the tropics. Indian Journal of Animal Sciences. 68(10): 1082-1086.
Reda, F.M., Ashour, E.A., Alagawany, M. and Abd El- Hack, M.E. (2015). Effects of Dietary Protein, Energy and Lysine Intake on Growth Performance and Carcass Characteristics of Growing Japanese Quails. Asian Journal of Poultry Science, 9: 155-164.
Rezende, M.J.M., Torres, A.F., Murata, L.S. and Garcia, J.A.S. and McManus, C.M. (2009). Determination of metabolizable energy value of corn with different average geometric diameters for European quails (coturnix coturnix coturnix). Brazilian Archives of Biology and Technology. 52(4): 981-984.
Liy, G., Dmnington, E.A. and Siegel, P.B. (1995). Growth related traits in body weight selected lines and their crosses reared under different nutritional regimens. British Journal of Poultry Science. 36: 209-219.
SAS Institute, (1995). SAS-User’s Guide: Statistics. Version 6.4th ed. SAS Institute Inc., Cary, NC., USA.
Schwartz, M.W., Woods, S.C., Porte, D., Seeley, R.J. and. Baskin, D.G. (2000). Central nervous system control of food intake. Nature. 404: 661–671.
Shrivastava, A.K. and Panda, B. (1999): A review of the nutrition of Japanese quail. Worlds Poultry Science Journal. 55: 73–81.
Tarasewicz, Z., Szczerbińska, D., Ligocki, M., Wiercińska, M., Majewska, D. and Romaniszyn, K. (2006). The effect of differentiated dietary protein level on the performance of breeder quails. Animal Science. 24(3): 207-216.