اثر تیمول، ترانس آنتول و دی آلیل دی سولفاید بر بقا و سیستم آنتی اکسیدانی زنبور عسل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی پیشین کارشناسی ارشد،گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه زابل

2 دانشیار، گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه زابل

چکیده

زنبورعسل نقش کلیدی در امنیت‌غذایی داشته اما سلامت کندوهای آن با آفات مختلف مانند واروآ تهدید شده، بنابراین استفاده از کنه‌کش‌های شیمیایی اجتناب‌ناپذیر بوده اما کاربرد مکرر آن‌ها باعث مقاومت واروآ شده، بنابراین توجه محققین به سموم‌ با منشا گیاهی جلب شده‌است. علی‌رغم کارایی سموم‌گیاهی در مبارزه با واروآ، اثرات جانبی آن‌ها بر سلامت کندو نکته کلیدی است. با این هدف، در پژوهش حاضر اثرات زیستی تیمول، ترانس‌آنتول و دی‌آلیل‌دی‌سولفاید که به‌عنوان کنه‌کش‌های مناسب معرفی شده‌اند، روی زنبورهای عسل بررسی شد. نتایج نشان داد که غلظت ایجادکننده کشندگی 50 درصد زنبورها با تیمول، ترانس‌آنتول و دی‌آلیل‌دی‌سولفاید به‌ترتیب معادل 46/16، 22/55 و 30/37 میلی گرم بر میلی لیتر بود. اثرات غلظت‌های کشندگی LC15، LC30 و LC50 از این ترکیبات بر فعالیت آنزیم‌های آنتی‌اکسیدانی زنبورعسل (کاتالاز، سوپراکسیددیسموتاز وگلوتاتیون اس-ترانسفراز) و میزان پراکسیداسیون لیپیدی، نشان داد که میزان فعالیت این آنزیم‌ها در تیمارهای تیمول و ترانس‌آنتول، افزایش معنی‌داری در مقایسه با شاهد داشته، در حالی‌که در تیمارهای دی‌آلیل‌دی‌سولفاید، میزان فعالیت این آنزیم‌ها کاهش یافت. همچنین نتایج نشان داد که میزان مالون‌دی‌آلدهید در همه تیمارها کاهش معنی‌دار داشت. مطالعه میزان بقا نشان داد که در هر سه غلظت تیمول، ترانس آنتول و دی‌آلیل‌دی‌سولفاید به ترتیب در چهار، شش و سه روز پس از تیمار، تلفات 100 درصدی زنبورهای عسل مشاهده شد. نتایج نشان داد که غلظت‌هایی زیرکشندگی ترکیبات مورد مطالعه، قادر به القای استرس‌اکسیداتیو بوده که می-تواند بقای حشره را تحت تاثیر قرار‌دهد. لذا توصیه می‌شود که استفاده از این ترکیبات برای مبارزه با واروآ در زنبورستان با احتیاط صورت گیرد.

کلیدواژه‌ها

موضوعات


Aboushaara, H., Staron, M. and Cermakova, T. (2017). Impacts of oxalic acid, thymol, and potassium citrate as Varroa control materials on some parameters of honey bees. Turkish Journal of Veterinary and Animal Sciences. 41(2):238-247.‏
Aebi, H. (1984). Catalase in vitro. Methods Enzymology, 105: 121-126.
Alkassab, A.T., Thorbahn, D., Frommberger, M., Bischoff G. and Pistorius J. (2020). Effect of contamination and adulteration of wax foundations on the brood development of honeybees. Apidologie. 51: 642-651.
Badawy, M.E.I., Nasr, H.M. and Rabea, E.I. (2015). Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie. 46:177-193.
Badiou-Beneteau, A., Carvalho, S.M., Brunet, J., Carvalho, G.A., Bulete, A., Giroud, B. and Belzunces, L.P. (2012). Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: Application to the systemic insecticide thiamethoxam. Ecotoxicology and Environmental Safety. 82: 22-31.
Bakkali, F., Averbeck, S., Averbeck, D. and Idaomar, M. (2008). Biological effects of essential oils -A review. Food and Chemical Toxicology. 46: 446-475.
Balieira, K.V.B., Mazzo, M., Bizerra, P.F.V., Guimarães, A.R.D.J.S., Nicodemo, D.  and Mingatto, F.E. (2018). Imidacloprid-induced oxidative stress in honey bees and the antioxidant action of caffeine. Apidologie. 49(5):562-572.‏
Bonnafe, E., Drouard, F., Hotier, L., Carayon, J.L., Marty, P., Treilhou, M. and Armengaud, C. (2015). Effect of a thymol application on olfactory memory and gene expression levels in the brain of the honeybee Apis melliferaEnvironmental Science and Pollution Research. 22(11):8022-8030.‏
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72:248-54.
Chakrabarti, P., Rana, S., Sarkar, S., Smith, B. and Basu, P. (2015). Pesticide-induced oxidative stress in laboratory and field populations of native honey bees along intensive agricultural landscapes in two Eastern Indian states. Apidologie. 46(1):107-129.
Charpentier, G., Vidau, C., Ferdy, J. B., Tabart, J. and Vetillard, A. (2014). Lethal and sub-lethal effects of thymol on honeybee (Apis mellifera) larvae reared in vitro. Pest Management Science. 70(1): 140-147.‏
Colin, T., Lim, M.Y., Quarrell, S.R. Allen G.R. and Barron A.B. (2019). Effects of thymol on European honey bee hygienic behaviour. Apidologie. 50:141-152.
Colin, T., Plath, J.A., Klein, S., Vine, P., Devaud, J.M., Lihoreau, M. et al. (2020). The miticide thymol in combination with trace levels of the neonicotinoid imidacloprid reduces visual learning performance in honey bees (Apis mellifera). Apidologie. 51: 499-509.‏
Colinet, D., Cazes, D., Belghazi, M., Gatti, J. L. and Poirié, M. (2011). Extracellular superoxide dismutase in insects characterization, function, and interspecific variation in parasitoid wasp venom. Journal of Biological Chemistry. 286(46): 40110-40121.‏
Costa, C., Lodesani, M. and Maistrello, L. (2010). Effect of thymol and resveratrol administered its candy or syrup on the development of Nosema ceranae and on the longevity of honeybees (Apis mellifera L.) in laboratory conditions. Apidologie. 41(2):141-150.
da Cunha, F.A.B., Wallau, G.L., Pinho, A.I., Nunes, M.E.M., Leite, N.F., Tintino, S.R., et al. (2015). Eugenia uniflora leaves essential oil induces toxicity in Drosophila melanogaster: Involvement of oxidative stress mechanisms. Toxicology Research. 4: 634-644.
Del Rio, D., Stewart, A.J. and Pellegrini N. (2005). A review of studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases. 15(4):316-328.
Dickel, F., Munch, D., Amdam, G.V., Mappe, S.J. and Freitak, D. (2018). Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. PLoS ONE. 13 (1): e0191256.
Ebert, T.A., Kevan, P.G., Bishop, B.L., Kevan, S.D. and Downer, R.A. (2007). Oral toxicity of essential oils and organic acids fed to honey bees (Apis mellifera). Journal of Apicultural Research. 46(4): 220-224.‏
Eliash, N. and Mikheyev, A. (2020). Varroa mite evolution: A neglected aspect of worldwide bee collapses?. Current Opinion in Insect Science. 39: 21-26.
Ellis, M.D.  and Baxendale, F.P. (1997). Toxicity of seven monoterpenoids to tracheal mites (Acari: Tarsonemidae) and their honey bee (Hymenoptera: Apidae) hosts when applied as fumigants. Journal of Economic Entomology. 90 (5):1087-1091.
Felton, G.W. and Summers, C.B. (1995). Antioxidant system in insect. Archieve of Insect Biochemical and Physiology. 29(2):187-197.
Floris, I., Satta, A., Cabras, P., Garau, V.L. and Angioni, A. (2004). Comparison between two thymol formulations in the control of Varroa destructor: Effectiveness, persistence, and residues. Journal of Economic Entomology. 97 (2):187-191.
Fujiyuki, T., Matsuzaka, E., Nakaoka, T., Takeuchi, H., Wakamoto, A., Ohka, S. et al. (2009). Distribution of Kakugo virus and its effects on the gene expression profile in the brain of the worker honeybee Apis mellifera L. Journal of Virology. 83(22):11560-11568.
Gashout, H.A., Guzman-Novoa, E. and Goodwin, P.H. (2020). Synthetic and natural acaricides impair hygienic and foraging behaviors of honey bees. Apidologie. 51:1155-1165.
Glavan, G., Novak, S., Božič, J. and Kokalj, A.J. (2020). Comparison of sublethal effects of natural acaricides carvacrol and thymol on honeybees. Pesticide Biochemistry and Physiology. 166: 1-9.
Haddad, L.S., Kelbert, L. and Hulbert, A.J. (2007). Extended longevity of queen honey bees compared to workers is associated with peroxidation-resistant membranes. Experimental Gerontology, 42(7):601-609.‏
Hodgson, E.K. and Fridovich, I. (1975). The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of enzyme. Biochemistry.14(24):5294-5949.
Hogeboom, A. (2019). Plant Secondary Metabolites Enhance Survival and Pathogen Tolerance in the European Honey Bee: A Structure-Function Study (Doctoral dissertation, Colorado State University. Libraries).‏
Isman, M.B. (2020). Botanical Insecticides in the Twenty-First Century-Fulfilling Their Promise? Annual Review of Entomology. 65:233-249.
Johnson, R.M., Dahlgren, L., Siegfried, B.D. and Ellis, M.D. (2013). Effect of in-hive miticides on drone honeybee survival and sperm viability. Journal of Apicultural Research. 52(2):88-95.
Klouceka, P.,  Smida, J., Flesarb, J., Havlikb, J., Titerac,  D., Radab, V., Drabekd, O.  and Kokoska, L. (2012). In vitro inhibitory activity of essential oil vapors against Ascosphaera apis. Natural Product Communications. 7(2):253-256.
Köhler, A., Nicolson, S.W. and Pirk, C.W.W. (2013). A new design for honey bee hoarding cages for laboratory experiments. Journal of Apicultural Research. 52:12-14.
Li, C., Xu, B., Wang, Y., Yang, Z., and Yang, W. (2014). Protein content in larval diet affects adult longevity and antioxidant gene expression in honey bee workers. Entomologia Experimentalis et Applicata. 151:19-26.
Li, Z., Hou, M., Qiu, Y., Zhao, B., Nie, H., and Su, S. (2020). Changes in antioxidant enzymes activity and metabolomic profiles in the guts of honey bee (Apis mellifera) larvae infected with Ascosphaera apisInsects. 11(419): 1-12.‏
Li-Byarlay, H., Huang, M. H., Simone-Finstrom, M., Strand, M. K., Tarpy, D. R. and Rueppell, O. (2016). Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage. Experimental Gerontology83:15-21.
Mengoni Goñalons, C. and Farina, WM. (2015). Effects of sublethal doses of Imidacloprid on young adult honeybee behaviour. PLoS ONE. 10(10): e0140814.
Mondet, F., Goodwin, M. and Mercer, A. (2011). Age-related changes in the behavioural response of honeybees to Apiguard®, a thymol-based treatment used to control the mite Varroa destructor. Journal of Comparative Physiology A. 197: 1055-1062.
Mossa, A.T.H. (2016). Green pesticides: Essential oils as biopesticides in insect-pest management Journal of Environmental Science and Technology. 9(5): 354-378.
Nikolic, T.V., Purać, J., Orčić, S., Kojić, D., Vujanović, D., Stanimirović, Z. and Blagojević, D.P. (2015). Environmental effects on superoxide dismutase and catalase activity and expression in honey bee. Archives of Insect Biochemistry and Physiology90(4):181-194.‏
Oppenoorth, F.J. (1979). Glutathione S-transferase and hydrolytic activity in a tetrachlorvinphos-resistant strain of housefly and their influence on resistance. Pesticide Biochemistry and Physiology. 11:176-178.
Peng, G., Kashio, M., Morimoto, T., Li, T., Zhu, J., Tominaga, M. and Kadowaki, T. (2015). Plant-derived tick repellents activatethe honey bee ectoparasitic mite TRPA1. Cell Reports. 12:190-202.
Porrini, M.P., Garrido, P.M., Gende, L.B., Rossini, C., Hermida, L., Marcángeli, J.A., and Eguaras, M.J. 2017. Oral administration of essential oils and main components: Study on honey bee survival and Nosema ceranae development. Journal of Apicultural Research. 56(5):616-624.
Price, K.L. and Lummis, S.C. (2014). An atypical residue in the pore of Varroa destructor GABA-activated RDL receptors affects picrotoxin block and thymol modulation. Insect Biochemistry and Molecular Biology55:19-25.‏
Rand, E.E., Smit, S., Beukes, M., Apostolides, Z., Pirk, C.W.W. and Nicolson, S.W. (2015). Detoxication mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Scientific Reports. 5(1779): 1-11.
Rattan, R.S. (2010). Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection. 29(9):913-920.
Sabahi, Q., Hamiduzzaman, M.M., Barajas-Pérez, J.S., Tapia-Gonzalez, J.M. and Guzman-Novoa, E. (2018). Toxicity of anethole and the essential oils of lemongrass and sweet marigold to the parasitic mite Varroa destructor and their selectivity for honey bee (Apis mellifera) workers and larvae. Psyche. Article ID 6196289:1-8.
Sabahi, Q., Morfin, N., Emsen, B., Gashout, H.A., Kelly, P.G., Otto, S. et al. (2020). Evaluation of dry and wet formulations of oxalic acid, thymol, and oregano oil for varroa mite (Acari: Varroidae) control in honey bee (Hymenoptera: Apidae) colonies. Journal of Economic Entomology. 113(6), 2588-2594.
Sahebzadeh, N. and Lau, W.H. (2017). Expression of heat-shock protein genes in Apis mellifera meda (Hymenoptera: Apidae) after exposure to monoterpenoids and infestation by Varroa destructor mites (Acari: Varroidae). European Journalof Entomology. 114:195-202.
Schoonhoven, L.M. (1982). Biological aspects of antifeedants. Entomologia Exprimentalis et Applicata, 31:57-89.
Seehuus, S.C., Norberg, K., Gimsa, U., Krekling, T., and Amdam, G.V. (2006). Reproductive protein protects sterile honey bee workers from oxidative stress. Proceedings of the National Academy of Sciences of the United States of America. 103:962-967.
Shaarawy, S.M., Tohamy, A.A., Elgendy, S.M., Abd-Elmageed, Z.Y., Bahnasy, A., Mohamed, M.S. et al. (2009). Protective effects of garlic and silymarin on NDEA-induced rats hepatotoxicity. International Jpurnal of Biological Sciences. 5: 549-557.
Shahriari, M. and Sahebzadeh, N. (2017). Effect of diallyl disulfide on physiological performance of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Archives of Phytopathology and Plant Protection. 50(1-2): 33-46.
Shoukry, R.S., Khattaby, A.M., El-Sheakh, A.A., Abo-Ghalia, A.H. and  Elbanna, S.M. (2013). Effect of some materials for controlling varroa mite on the honeybee drones (Apis mellifera L.). Egyptian Journal of Agricultural Research. 91(3):825-834.‏
Slater, T.F. (1984) Overview of methods used for detecting lipid peroxidation. Methods in Enzymology. 105: 283-293.
Slowinska, M., Nynca, J., Wilde, J., Bak, B., Siuda, M. and Ciereszko, A. (2016). Total antioxidant capacity of honeybee haemolymph in relation to age and exposure to pesticide and comparison to antioxidant capacity of seminal plasma. Apidologie. 47(2): 227-236.
Staron, M., Sabo, R., Sobeková, A., Sabová, L., Legáth, J., Lohajová, Ľ. and  Javorský, P. (2017). Formetanate toxicity and changes in antioxidant enzyme system of Apis mellifera larvae. Environmental Science and Pollution Research24(16):14060-14070.‏
Stefanini, M.B., Ming, L.C., Marques, M.O.M., Facanali, R., Meireles, M.A.A., Moura, L.S., Marchese, J.A. and Sousa, L.A. (2006). Essential oil constituents of different organs of fennel (Foeniculum vulgare var. vulgare). The Revista Brasileira de Plantas Medicinais. 8: 193-198.
Strachecka, A., Grzybek, M., Ptaszynska, A.A., Los, A., Chobotow, J., and Rowinski, R. (2019). Comparison of lactate dehydrogenase activity in hive and forager honeybees may indicate delayed onset muscle soreness-Preliminary studies. Biochemistry (Moscow). 84 (4):435-440.
Strachecka, A., Krauze, M., Olszewski, K., Borsuk, G., Paleolog, J., Merska M., Chobotow, J., Bajda, M. and  Grzywnowicz, K. (2014). Unexpectedly strong effect of caffeine on the vitality of western honeybees (Apis mellifera). Biochemistry (Moscow). 79:1192-1201.
Tananaki, C., Goras, G., Huggett, N., Karazafiris, E., Dimou, M. and Thrasyvoulou, A. (2014). Evaluation of the impact of Exomite Pro™ on Varroa mite (Varroa destructor ) populations and honeybee (Apis mellifera ) colonies: efficacy, side effects and residues. Parasitology Research. 113(4):1251-1259.
Weirich, G.F., Collins, A.M. and Williams, V.P. (2002). Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie. 33:3-14.
Xavier, V.M., Message, D., Picanco, M.C., Chediak, M., Santana Junior, P.A., Ramos, R.S. and Martins, J.C. (2015). Acute toxicity and sublethal effects of botanical insecticides to honeybees. Journal of Insect Sciences. 15(1):1-6.
Xiao, J., He Q., Liu, Q., Wang, Z., Yin, F., Chai, Y., Yang, Q., Jiang, X., Liao, M., Yu, L., Jiang, W., and Cao, H. (2022). Analysis of honey bee exposure to multiple pesticide residues in the hive environment. Science of The Total Environment. 805, 150292: 1-10.
Yang, F.L., Zhu, F. and Lei, C.L. (2012). Insecticidal activities of garlic substances against adults of grain moth, Sitotroga cerealella (Lepidoptera: Gelechiidae). Insect Sciences. 19:205-212.
Zhang, Y., Yan, H., Lu, W. Li, Y., Guo, X., and Xu, B. (2013). A novel Omega-class glutathione S-transferase gene in Apis cerana cerana: Molecular characterisation of GSTO2 and its protective effects in oxidative stress. Cell Stress and Chaperones. 18:503-516.
Zhu, Y.C., Caren, J., Reddy ,G.V.P., Li, W., and Yao, J. (2020). Effect of age on insecticide susceptibility and enzymatic activities of three detoxification enzymes and one invertase in honey bee workers (Apis mellifera). Comparative Biochemistry and Physiology, Part C. 238 (108844): 1-8.