Genetic parameters of egg weight, yolk weight and yolk fatty acids in Japanese quail

Document Type : Research Paper

Authors

1 Department of Animal Science, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran

2 Former student of Animal breeding, Department of Animal Science, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran

3 Department of Animal Science, Azadshahr Branch, Islamic Azad University

Abstract

The aim of the present study was to investigate effect of additive genetic on egg weight, yolk weight and yolk fatty acid content and estimation of heritability for these traits. In this research, 150 white Japanese quails (50 males and 100 females) were used as the base population (without any pedigree information). In the F2 generation, 100 female quails were randomly selected at the fifth week of age and transferred to laying cages. The traits included egg weight, yolk weight and yolk fatty acid contents. (Co) Variance components and genetic parameters were estimated using multiple animal models by Wombat software. The estimated heritability for egg weight and yolk weight were 0.45 and 0.38, respectively. These estimates for yolk fatty acids ranged from 0.27 (Palmitoleic acid) to 0.45 (Palmetic acid). Genetic correlations between egg weight and yolk fatty acids were low, ranging from 0.01 (between egg weight and Linoleic acid) to 0.10 (between egg weight and Stearic acid). The higher genetic correlations were between yolk weight and yolk fatty acids, varying from 0.10 (between yolk weight and Linoleic acid) to 0.51 (between yolk weight and Stearic acid). The results showed that selection for increasing the yolk weight could lead to producing eggs with more contents of yolk fatty acids.

Keywords

Main Subjects


رئوفی، ز.، زره داران، س.، رحیمی، ق.، آهنی آذری، م. و دستار، ب. (1391). تجزیه و تحلیل ژنتیکی کیفیت تخم در بلدرچین ژاپنی. مجله علوم دامی ایران. 43 (3): 413-421. 10.22059/ijas.2012.29348 :DOI.
فرزین، ن.، واعظ ترشیزی، ر. و امام جمعه کاشان، ن. (1386). برآورد پارامترهای ژنتیکی وزن تخم مرغ، وزن زرده و ترکیبات آن در یک گله مرغ مولد گوشتی. ژنتیک نوین. 2 (3): 25-30.
Al-Daraji, H.J., Al-Mashadani, H.A., Mirza, H.A., Al-Hayani, W.K. and Al-Hassani, A.S. (2011). Influence of source of oil added to diet on egg quality traits of laying quail. International Journal of Poultry Science, 10(2): 130-136. Doi: 10.3923/ijps.2011.130.136.
Ayerza, R. and Coates, W. (2000). Dietary levels of Chia: influence on yolk cholesterol, lipid content and fatty acid composition for two strains of hens. Poultry Science, 79:724–739.
Bahie El-Deen; M., El Tahawy; W. S., Attia, Y. A. and Meky, M. A. (2008). Inheritance of age at sexual maturity and its relationship with some production traits of Japanese quails. Egypt Poultry Science, 28 (IV): 1217-1232. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.607.1256&rep=rep1&type=pdf.
Biesiada-Drzazga, B., Banaszewska, D., Andraszek, K., Bombik, E., Kałuża, H. and Rojek, A. (2014). Comparison of egg quality of free range Araucana and Green-legged Partridge chickens. Europ.Poult.Sci., 78. Doi: 10.1399/eps.2014.36.
Biesiada-Drzazga, B., Banaszewska, D., Wielogorska, K., Kaim-Mirowski, S. (2020). The effect of the genetic origin of hens on selected egg traits. Acta Sci. Pol. Technol. Aliment., 19(1): 101–107. http://dx.doi.org/10.17306/J.AFS.2020.0757.
Celik, S., Eyduran, E., Sengul, A.U. and Sengul, T. (2021). Relationship among egg quality traits in Japanese quails and prediction of egg weight and color using data mining algorithms. Trop Anim Health Prod, 53(3):382. Doi: 10.1007/s11250-021-02811-2.
Chen, X, Zhu, W., Du, Y., Liu, X., Geng, Z. (2019). Genetic parameters for polk cholesterol and transcriptional evidence indicate a role of Llipoprotein lipase in the cholesterol metabolism of the Chinese Wenchang chicken. Front Genet, 3(10):902. doi: 10.3389/fgene.2019.00902. PMID: 31632438; PMCID: PMC6786094.
Cherian, G. (2015). Nutrition and metabolism in poultry: role of lipids in early diet. Journal of Animal Science and Biotechnology, 6:28. Doi 10.1186/s40104-015-0029-9.
Franco, D., Rois, D., Arias, A., Justo, J. R. et al. (2020). Effect of Breed and Diet Type on the Freshness and Quality of the Eggs: A Comparison between Mos (Indigenous Galician Breed) and Isa Brown Hens. Foods, 9(3): 342. Doi: 10.3390/foods9030342. PMID: 32188038; PMCID: PMC7142747.
Garcia-Lopez, J. C., Suarez-Oporta, M. E., Pinos-Rodriguez, J. M. and Alvarez-Fuentes, G. (2007). Egg components, lipid fraction and fatty acid composition of Creole and Plymouth Rock x Rhode Island Red cross hens fed with three diets. World's Poultry Science Journal, 63 (3). https://doi.org/10.1017/S0043933907001584.
Golzar Adabi, SH., Ahbab, M., Fani, A. R., Hajbabaei, A., Ceylan, N. and Cooper, R. G. (2013). Egg yolk fatty acid profile of avian species – influence on human nutrition. Journal of Animal Physiology and Animal Nutrition, 97: 27–38. Doi: 10.1111/j.1439-0396.2011.01239.x.
Golzar Adabi1, SH., Fani, A., Ceylan, N., Hajibabaei, A. and Casey, N.H. (2016). Enrichment of quail (Coturnix cot. japonica) eggs by omega-3 fatty acids and its nutritional effect on young healthy women. Europ.Poult.Sci., 80: 1-20. Doi: 10.1399/eps.2016.149.
Griogorova, M., Nikolova, M., Penkov, D and Gerzilov, V. (2014). Egg yolk lipids change in Japanese quail given Tribulus Terrestris extract. Bulgarian Journal of Agricultural Science, 20(6): 1472-1476.
Hartmann, C., Johansson, k., Strandberg, E. and Rydhmer, L. (2003). Genetic correlation between the maternal genetic effect on chick weight and the direct genetic effects on egg composition traits in a White leghorn line. Poultry Science. 82: 1-8. Doi: 10.1093/ps/82.1.1.
Hartmann, C., Strandberg, E., Rydhmer, L. and Johansson, K. (2002). Genetic relations between reproduction, chick weight and maternal egg composition in a white leghorn line. Animal Science, 52: 91-101. https://doi.org/10.1080/09064700212072.
Kaye, J., Nwachi Akpa, G., Alphonsus, C., Kabir, M., Zahraddeen, D. and  Mukhtari Shehu, D. (2016). Responsed to genetic improvement and heritability of egg production and egg quality traits in Japanese quail (coturnix coturnix japonica). ASRJETS, 16 (1): 277-292. https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/1258.
Kazmierska, M., Jarosz, B., Korzeniowska, M., Trziszka, T. and Dodrzanska, Z. (2005). Comparative analysis of fatty acid profile and cholesterol content of egg yolks of different bird species. Pol. J. Food Nutr. Sci. 14/55: 69-73.
Keum, M.C. An, B.K., Shin, K.H. and Lee, K.W. (2018). Influence of dietary fat sources and conjugated fatty acid on egg quality, yolk cholesterol, and yolk fatty acid composition of laying hens. Revista Brasileira de Zootecnia, 47:e20170303. https://doi.org/10.1590/rbz4720170303.
Kostaman, T., Soewandi, B .D .P and Pasaribu, T. (2021). Fatty acid profiles of egg yolk and albumen from Cemani and White Leghorn chickens. IOP Conf. Series: Earth and Environmental Science, 788. Doi:10.1088/1755-1315/788/1/012086.
Latour, M.A., Peebles E.D., Doyle, S.M. and Pansky T. (1998). Broiler breeder age and dietary fat influence the yolk fatty acid profiles of fresh eggs and newly hatched chicks. Poultry Science. 77: 47-53. https://doi.org/10.1093/ps/77.1.47.
Lesic, T., Kresic, G., Cvetnic, L., Petrovic, M. and Pleadin, J. (2017). The influence of hen age on fatty acid composition of commercial eggs. Croat. J. Food Sci. Technol, 9 (2): 158–167. Doi: 10.17508/CJFST.2017.9.2.12.
Mennicken, L., Ponsuksili, S., Tholen, E., Khang, N.T.K., Steiner, K., Petersen, J., et al. (2005). Divergent selection for ω3:ω6 polyunsaturated fatty acid ratio in quail eggs, Arch. Anim. Breed., 48: 527–534. https://doi.org/10.5194/aab-48-527-2005.
Meyer, K. (2007). WOMBAT-A tool for mixed model analyses in quantitative genetics by REML. Journal of Zhejiang University Science B, 8(11):815-821. Doi: 10.1631/jzus.2007.B0815.
Mielenz, N., Noor, R.R and Schuler, L. (2006). Estimation of additive and non-additive genetic variances of body weight, egg weight and egg production for quails (Coturnix coturnix japonica) with an animal model analysis. Arch Tierz Dummerstorf, 49 (3): 300-307.
Momoh, O.M, Gambo, D and Dim, N.I. (2014). Genetic parameters of growth, body, and egg traits in Japanese quails (Cotournix cotournix japonica) reared in southern guinea savannah of Nigeria. Journal of Applied Biosciences, 79:6947 – 6954. http://dx.doi.org/10.4314/jab.v79i1.8.
Manor, M. L. Derksen, T. J., Magnuson, A. D., Raza, F., Lei, W. G. (2019). Inclusion of Dietary Defatted Microalgae Dose-Dependently Enriches ω-3 Fatty Acids in Egg Yolk and Tissues of Laying Hens. The Journal of Nutrition, 149(6):942–950, https://doi.org/10.1093/jn/nxz032
National Research Council. (1994). Nutrient Requirements of Poultry: Ninth Revised Edition, 1994. Washington, DC: The National Academies Press. https://doi.org/10.17226/2114.
Omidi, M., Rahimi, S., Karimi Torshizi, M.A. (2015). Modification of egg yolk fatty acids profile by using different oil sources. Veterinary Research Forum; 6(2): 137–141. PMID: 26261709; PMCID: PMC4522527.
Polat, E. S., Citil. O. B. and Garip, M. (2013). Fatty acid composition of yolk of nine poultry species kept in their natural environment. Animal Science Papers and Reports. Institute of Genetics and Animal Breeding, Jastrzebiec, Poland. 31 (4): 363-368.
Rath, P.K, Mishra, P.K, Mallick, B.K, Behura, N.C. (2015). Evaluation of different egg quality traits and interpretation of their mode of inheritance in White Leghorns. Vet World, 8(4):449-452. Doi:10.14202/vetworld.2015.449-452.
Rodda, D.D., Friars, G.W., Garora, J.S. and Merrit E.S. (1977). Genetic parameter estimates and strain comparisons of egg compositional traits. Breeding Poultry Science: 18: 459-473. https://doi.org/10.1080/00071667708416386.
Saghi, R., Rokoueia, M., Dashaba, G. R. Saghi, D. A. and Faraji-Arough, H. (2022). Using a linear-threshold model to investigate the genetic relationship between survival and productive traits in Japanese quail. Italian Journal of Animal Science, 21 (1):605–611. https://doi.org/10.1080/1828051X.2021.2023332.
Sari, M., Tilki, M and Saatci, M. (2016). Genetic parameters of egg quality traits in long-term pedigree recorded Japanese quail. Poultry Science, 95:1743–1749. http://dx.doi.org/10.3382/ps/pew118.
Sezer, M. (2008). Heritability of interior egg quality traits for Japanese quail. International Journal of Natural and Engineering Sciences, 2 (2):77-79. Retrieved from https://ijnes.org/index.php/ijnes/article/view/402.
Silva, L.P., Ribeiro, J.C., Crispim, A.C., Silva, F.G. et al. (2013). Genetic parameters of body weight and egg traits in meat-type quail. Livestock Science, 153: 27–32. http://dx.doi.org/10.1016/j.livsci.2013.01.014.
Sinclair, A.J. (1991). The good oil: Omega-3 poly unsaturated fatty acid. Today Life Science, 3: 18-27.
Stibilj, V., Koman Rajsp, M and Holcman, A. (1999). Fatty acid composition of eggs enriched with Omega-3 fatty acids on the market. Zootehnika, 74 (2): 27-36.
Varkoohi, S., Pakdel, A., Moradi, M., Nejati, A., Kause, A. and Zaghari M. (2011). Genetic parameters for feed utilization traits in Japanese quail. Poultry Science, 90: 42-47. https://doi.org/10.3382/ps.2010-01072.
Varkoohi, S. and Kaviani, K. (2014). Genetic improvement for body weight of Japanese quail.     Annual Research & Review in Biology, 4(1): 347-353.
Wang, Y., Sunwoo, G. and Sim, J.S. (2000). Fatty acid determination in chicken egg yolk: A comparison of different methods. Poultry Science, 79: 1168-1171. Doi: 10.1093/ps/79.8.1168.
Yalcin, S., Oguz, I. and Otles, S. (1995). Carcass characteristics of quail (Coturnix Coturnix Japonica) slaughtered at different ages. British Poultry Science, 36: 393-399. https://doi.org/10.1080/00071669508417786.
Yilmaz-Dikmen, B and Sahan, U. (2009). The relationship among age, yolk fatty acids content, and incubation results of broiler breeders. Poultry Science, 88:185–190. Doi:10.3382/ps.2008-00068.
Zita, L., Okrouhla, M., Krunt, O., Kraus, A., Stadnik, L., Cítek, J. et al. (2022). Changes in fatty acids profile, health indices, and physical characteristics of organic eggs from laying hens at the beginning of the first and second laying cycles. Animals, 12: 125. https://doi.org/10.3390/ani12010125.